
1

Secure Communication
Alice

Symmetric cryptography
• Both parties must agree on a secret key, K
• message is encrypted, sent, decrypted at

other side

• Key distribution must be secret
– otherwise messages can be decrypted
– users can be impersonated

EK(P) DK(C)

Bob

Key explosion
• Each pair of users needs a separate key for

secure communication
Alice Bob

KAB

2 users: 1 key

BobAlice

KAB

Charles

KBCKAC

3 users: 3 keys

6 users: 15 keys

4 users: 6 keys

100 users: 4950 keys

1000 users: 399500 keys

n users: keys
2

1)(−nn

Key distribution

Secure key distribution is the biggest
problem with symmetric cryptography

Key exchange
How can you communicate securely with
someone you’ve never met?

– Whit Diffie - idea for a public key algorithm
– goal: sender can create two sets of keys: one public

and one private
– sender sends data encrypted with the receiver’s

public key
– receiver can decrypt data with her private key

– challenge: can this be done securely?
• Knowledge of public key should not allow derivation of

private key

Diffie-Hellman exponential key exchange
Key distribution algorithm

– first algorithm to use public/private keys
– not public key encryption
– based on difficulty of computing discrete

logarithms in a finite field compared with
ease of calculating exponentiation

allows us to negotiate a secret session
key without fear of eavesdroppers

2

Diffie-Hellman exponential key exchange

• All arithmetic performed in
field of integers modulo some large number

• Both parties agree on
– a large prime number p
– and a number α < p

• Each party generates a public/private key pair

private key for user i: Xi

public key for user i: Yi= piX modα

Diffie-Hellman exponential key exchange
• Alice has secret key

XA

• Alice has public key
YA

• Alice computes

• Bob has secret key
XB

• Bob has public key
YB

pYK AX
B mod=

K = (Bob’s public key) (Alice’s private key) mod p

Diffie-Hellman exponential key exchange
• Alice has secret key

XA

• Alice has public key
YA

• Alice computes

• Bob has secret key
XB

• Bob has public key
YB

• Bob computes

pYK AX
B mod= pYK BX

A mod'=

K’ = (Alice’s public key) (Bob’s private key) mod p

Diffie-Hellman exponential key exchange
• Alice has secret key

XA

• Alice has public key
YA

• Alice computes

• expanding:

• Bob has secret key
XB

• Bob has public key
YB

• Bob computes

• expanding:
pYK AX

B mod= pYK BX
A mod'=

p

pp

pYK

AB

AB

A

XX

XX

X
B

mod

mod)mod(

mod

α

α

=

=

=

p

pp

pYK

BA

BA

B

XX

XX

X
A

mod

mod)mod(

mod'

α

α

=

=

=

K is a common key, known only to Bob and Alice
K = K’

Diffie-Hellman example

• Alice picks
XA = 18

• Alice’s public key is:
YA = 718 mod 31667
= 6780

• K = 2218418mod
31667
K = 14265

• Bob picks
XB = 27

• Bob’s public key is:
YB = 727 mod 31667
= 22184

• K = 678027mod
31667
K = 14265

Suppose p = 31667, α = 7

Key distribution problem is solved!
• User maintains private key
• Publishes public key in database

(“phonebook”)

• Communication begins with key exchange to
establish a common key

• Common key can be used to encrypt a
session key
– increase difficulty of breaking common key by

reducing the amount of data we encrypt with it
– session key is valid only for one communication

session

3

RSA
• Ron Rivest, Adi Shamir, Leonard Adleman created a true

public key encryption algorithm in 1977
• Each user generates two keys

– private key (kept secret)
– public key

• Data encrypted with the private key can only be
decrypted with the corresponding public key
– integrity, authentication

• Data encrypted with the public key can only be
decrypted with the corresponding private key
– secure communication

• difficulty of algorithm based on the difficulty of factoring
large numbers
– keys are functions of a pair of large (~200 digits) prime

numbers

RSA algorithm
Generate keys

– choose two random large prime numbers p, q
– Compute the product n=pq
– randomly choose the encryption key, e, such

that
e and (p-1)(q-1) are relatively prime

– use the extended Euclidean algorithm to
compute the decryption key, d:

ed = 1 mod ((p-1)(q-1))
d = e-1 mod ((p-1)(q-1))

– discard p, q

RSA algorithm
• encrypt

– divide data into numerical blocks < n
– encrypt each block:

c = me mod n

• decrypt:
m = cd mod n

Communication with public key algorithms
Different keys for encrypting and
decrypting

– no need to worry about key distribution

Communication with public key algorithms
Alice Bob

Alice’s public key: KAAlice’s public key: KA

Bob’s public
key: KB

Bob’s public
key: KB

exchange public keys
(or look up in a directory/DB)

EB(P) Db(C)

Alice Bob

Alice’s public key: KAAlice’s public key: KA

Bob’s public key: KBBob’s public key: KB

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

4

EB(P) Db(C)

Alice Bob

Alice’s public key: KAAlice’s public key: KA

Bob’s public key: KBBob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

Communication with public key algorithms

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Public key woes
Public key cryptography is great but:

–RSA about 100 times slower than DES in
software, 1000 times slower in HW

–Vulnerable to chosen plaintext attack
• if you know the data is one of n messages, just

encrypt each message with the recipient’s public key
and compare

–It’s a good idea to reduce the amount of data
encrypted with any given key

• but generating RSA keys is computationally very time
consuming

Hybrid cryptosystems
Use public key cryptography to encrypt a

randomly generated symmetric key

session key

Communication with a hybrid cryptosystem
Alice Bob

Bob’s public key: KBBob’s public key: KB

Get recipient’s public key
(or fetch from directory/database)

Communication with a hybrid cryptosystem
Alice Bob

Bob’s public key: KBBob’s public key: KB

Pick random session key, K

EB(K)EB(K)

Encrypt session key
with Bob’s public key

Bob decrypts K with
his private key

K = Db(EB(K))

Communication with a hybrid cryptosystem
Alice Bob

Bob’s public key: KBBob’s public key: KB

EB(K)EB(K) K = Db(EB(K))

EK(P) DK(C)

encrypt message using a
symmetric algorithm

and key K

decrypt message using a
symmetric algorithm

and key K

5

Communication with a hybrid cryptosystem
Alice Bob

Bob’s public key: KBBob’s public key: KB

EB(K)EB(K) K = Db(EB(K))

EK(P) DK(C)

decrypt message using a
symmetric algorithm

and key K

encrypt message using a
symmetric algorithm

and key K

DK(C’) EK(P’)

Digital Signatures

Digital signatures
We use signatures because a signature is:

Authentic Unforgeable
Not reusable Non repudiatable
Renders document unalterable

Digital signatures
We use signatures because a signature is

Authentic Unforgeable
Not reusable Non repudiatable
Renders document unalterable

ALL UNTRUE!

Can we do better with digital signatures?

Digital signatures - arbitrated protocol
Arbitrated protocol using symmetric encryption

– turn to trusted third party (arbiter) to authenticate
messages

Alice Bob

Trent

C=EA(P)

Alice encrypts message for herself and sends it to Trent

Trent is trusted
and has everyone’s keys

Digital signatures - arbitrated protocol

Alice Bob

Trent

P= DA(C)

Trent receives Alice’s message and decrypts it with Alice’s key
- this authenticates that it came from Alice
- he may choose to log a hash of the message to
create a record of the transmission

6

Digital signatures - arbitrated protocol

Alice Bob

Trent

Trent now encrypts the message for Bob and sends it to Bob

C’= EB(P)

Digital signatures - arbitrated protocol

Alice Bob

Trent

Bob receives the message and decrypts it
- it must have come from Trent
since only Trent and Bob have Bob’s key

- if the message says it’s from Alice, it must be - we trust Trent

P’= DB(C’)

Digital signatures with multiple parties
Bob can forward the message to Charles in the same manner.
Trent can validate stored hash to ensure that Bob did not alter
the message

Alice Bob

Trent

Bob encrypts message with his key and sends it to Trent

P’= DB(C’)

Charles

C’’= EB(P’)

Digital signatures with multiple parties

Alice Bob

Trent

Trent decrypts the message
- knows it must be from Bob
- looks up ID to match original hash from Alice’s message
- validates that the message has not been modified
- adds a “signed by Bob” indicator to the message

Charles

P’’= DB(C’’)

Digital signatures with multiple parties

Alice Bob

Trent

Trent encrypts the new message for Charles

Charles

C’’’= EC(P’’)

Digital signatures with multiple parties

Alice Bob

Trent

Charles decrypts the message
- knows the message must have come from Trent
- trusts Trent’s assertion that the message originated with Alice

and was forwarded through Bob

Charles

P’’’= DC(C’’’)

7

Digital signatures - public key cryptography

Ea(P) DA(C)

Alice Bob

encrypt message with
Alice’s private key

decrypt message with
Alice’s public key

Encrypting a message with a private key is the
same as signing!

Digital signatures - public key cryptography
• What if Alice was sending Bob binary

data?
– Bob might have a hard time knowing

whether the decryption was successful or
not

• Public key encryption is considerably
slower than symmetric encryption
– what if the message is very large?

• What if we don’t want to hide the
message, yet want a valid signature?

Digital signatures - public key cryptography
• Create a hash of the message

• Encrypt the hash and send it with the
message

• Validate the hash by decrypting it and
comparing it with the hash of the received
message

Digital signatures - public key cryptography

Alice Bob

H(P)

Alice generates a hash of the message

Digital signatures - public key cryptography

Alice Bob

H(P)

Alice encrypts the hash with her private key

Ea(H(P))

Digital signatures - public key cryptography

Alice Bob

H(P)

Alice sends Bob the message and the encrypted hash

Ea(H(P))

8

Digital signatures - public key cryptography

Alice Bob

H(P)

1. Bob decrypts the has using Alice’s public key
2. Bob computes the hash of the message sent by Alice

C = Ea(H(P)) H(P)

H’ = DA(C)

Digital signatures - public key cryptography

Alice Bob

H(P)

If the hashes match
- the encrypted hash must have been generated by Alice
- the signature is valid

C = Ea(H(P)) H(P)

H’ = DA(C)

Digital signatures - multiple signers

Bob

Bob generates a hash (same as Alice’s) and encrypts it
with his private key

- sends Charles:
{message, Alice’s encrypted hash, Bob’s encrypted hash}

Alice

H(P)

C = Ea(H(P))

C2 = Eb(H(P))

Charles

Digital signatures - multiple signers

Bob

Charles:
- generates a hash of the message: H(P)
- decrypts Alice’s encrypted hash with Alice’s public key

- validates Alice’s signature
- decrypts Bob’s encrypted hash with Bob’s public key

- validates Bob’s signature

Alice

H(P)

C = Ea(H(P))

C2 = Eb(H(P))

Charles

H2 = DA(C2)

H1 = DA(C)

Secure and authenticated messaging
If we want secrecy of the message
–combine encryption with a digital

signature
–use a session key:

pick a random key, K, to encrypt the
message with a symmetric algorithm

–encrypt K with the public key of each
recipient

– for signing, encrypt the hash of the
message with sender’s private key

Secure and authenticated messaging

Alice

H(P)

Alice generates a digital signature by encrypting
the message digest with her private key.

C1 = Ea(H(P))

9

Secure and authenticated messaging

Alice

H(P)

Alice picks a random key, K, and encrypts the message (P)
with it using a symmetric algorithm.

C1 = Ea(H(P))

C = EK(P)

Secure and authenticated messaging

Alice

H(P)

Alice encrypts the session key for each recipient of
this message: Bob and Charles using their public keys.

C1 = Ea(H(P))

C = EK(P)

KK KK
C2 = EB(K)

KK
C3 = EC(K)

Secure and authenticated messaging

Alice

H(P)

The aggregate message is sent to Bob and Charles

C1 = Ea(H(P))

C = EK(P)

KK KK
C2 = EB(K)

KK
C3 = EC(K)

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Bob

Charles

Message from Alice

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob receives the message:
- extracts key by decrypting it with his private key

K = Eb(C2)

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob decrypts the message using K

K = Eb(C2)

P = DK(C)
Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob computes the hash of the message

K = Eb(C2)

P = DK(C) H(P)

10

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob looks up Alice’s public key

K = Eb(C2)

P = DK(C) H(P)

KA

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob decrypts Alice’s signature using Alice’s public key

K = Eb(C2)

P = DK(C) H(P)

H1 = DA(C1)

Message:

Signature:

Key for Bob: KK

KK
Key for
Charles:

Message from Alice

Secure and authenticated messaging

Bob validates Alice’s signature

K = Eb(C2)

P = DK(C) H(P)

H1 = DA(C1)

H1 = H(P) ?

Cryptographic toolbox
• Symmetric encryption
• Public key encryption
• One-way hash functions
• Random number generators

– Nonces, session keys

• Message authentication codes
– Made from hash functions

• Digital signatures
– Commonly: encrypted hash functions

The end

