
1

Remote Procedure Calls

Paul Krzyzanowski • Distributed Systems

Problems with sockets
Sockets interface is straightforward

– [connect]
– read/write
– [disconnect]

Forces read/write mechanism
– Not how we generally program
– We usually use a procedure call

To make distributed computing look more
like centralized:

– I/O is not the way to go

Paul Krzyzanowski • Distributed Systems

RPC
1984: Birrell & Nelson

– Mechanism to call procedures on other
machines

– Process on machine A can call procedure on
machine B
• A is suspended
• Execution continues on B
• When B returns, control passed back to A

Remote Procedure Call

Goal: it should appear to the programmer that a
normal call is taking place

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j =f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

call by value

call by value

call by reference

SP

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j =f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

SP

1. Prepare for call:
put params on stack

SP

7
55441122

999

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j =f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

SP

2. Call:
call f

SP

7
55441122

999
Return addr

2

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j = f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

SP

3. On entry to f:
adjust SP to allocate
space for locals

SP

7
55441122

999
Return addr

f:local vars

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j =f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

SP

4. Prepare to return:
- return value in

register
- adjust SP
- returnSP

7
55441122

999
Return addr

Paul Krzyzanowski • Distributed Systems

Digression: local procedure calls
j =f(i, “mystring”, 7);
local vars

i=999

mystring
Code &

Static data

55441122

SP

5. Return:
caller cleans up
parametersSP

Paul Krzyzanowski • Distributed Systems

Implementing RPC
No architectural support for remote
procedure calls

Simulate it with tools we have
(local procedure calls)

Simulation makes RPC a
language-level construct

instead of an
operating system construct

Paul Krzyzanowski • Distributed Systems

Implementing RPC
The trick:

Create stub functions to make it appear to
the user that the call is local

Stub function contains the function’s interface

Paul Krzyzanowski • Distributed Systems

client server

Stub functions

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

1. Client calls stub (params on stack)

client functionsclient functions

client stubclient stub

3

Paul Krzyzanowski • Distributed Systems

client server

Stub functions

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

2. Stub marshals params to net message

client functionsclient functions

client stubclient stub

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
3. Network message sent to server

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
4. Receive message: send to stub

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
5. Unmarshal parameters, call server func

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
6. Return from server function

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
7. Marshal return value and send message

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

4

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
8. Transfer message over network

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
9. Receive message: direct to stub

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

client server

Stub functions
10. Unmarshal return, return to client code

client functionsclient functions

client stubclient stub

network routinesnetwork routines

server functionsserver functions

server stub
(skeleton)

server stub
(skeleton)

network routinesnetwork routines

Paul Krzyzanowski • Distributed Systems

Benefits
• Procedure call interface

• Writing applications simplified
– RPC hides all network code into stub

functions
– Application programmers don’t have to

worry about details
• Sockets, port numbers, byte ordering

• RPC: presentation layer in OSI model

RPC has issues

Paul Krzyzanowski • Distributed Systems

Parameter passing
Pass by value

– Easy: just copy data to network message

Pass by reference
– Makes no sense without shared memory

5

Paul Krzyzanowski • Distributed Systems

Pass by reference?
1. Copy items referenced to message buffer
2. Ship them over
3. Unmarshal data at server
4. Pass local pointer to server stub function
5. Send new values back

To support complex structures
– Copy structure into pointerless

representation
– Transmit
– Reconstruct structure with local pointers

on server

Paul Krzyzanowski • Distributed Systems

Representing data
No such thing as

incompatibility problems on local
system

Remote machine may have:
– Different byte ordering
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
– Alignment requirements

Paul Krzyzanowski • Distributed Systems

Representing data
IP (headers) forced all to use big endian byte
ordering for 16 and 32 bit values

– Most significant byte in low memory
• Sparc, 680x0, MIPS, G5
• x86/Pentiums use little endian

main() {
unsigned int n;
char *a = (char *)&n;

n = 0x11223344;
printf("%02x, %02x, %02x, %02x\n",

a[0], a[1], a[2], a[3]);
}

Output on a Pentium:
44, 33, 22, 11

Output on a G4:
11, 22, 33, 44

Paul Krzyzanowski • Distributed Systems

Representing data
Need standard encoding to enable
communication between heterogeneous
systems

– e.g. Sun’s RPC uses XDR (eXternal Data
Representation)

Paul Krzyzanowski • Distributed Systems

Representing data
Implicit typing

– only values are transmitted, not data types
or parameter info

– e.g., Sun XDR

Explicit typing
– Type is transmitted with each value
– e.g., ISO’s ASN.1, XML

Paul Krzyzanowski • Distributed Systems

Where to bind?
Need to locate host and correct server
process

6

Paul Krzyzanowski • Distributed Systems

Where to bind? – Solution 1

• Server sends message to central
authority stating its willingness to
accept certain remote procedure calls
(and sends port number)

• Clients then contact this authority when
they need to locate a service

Maintain centralized DB that can locate a
host that provides a particular service
(Birrell & Nelson’s 1984 proposal)

Paul Krzyzanowski • Distributed Systems

Where to bind? – Solution 2
• Require client to know which host it

needs to contact

• A server on that host maintains a DB of
locally provided services

• Solution 1 is problematic for Sun NFS –
identical file servers serve different file
systems

Paul Krzyzanowski • Distributed Systems

Transport protocol
Which one?

• Some implementations may offer only
one (e.g. TCP)

• Most support several
– Allow programmer (or end user) to choose.

Paul Krzyzanowski • Distributed Systems

When things go wrong
• Local procedure calls do not fail

– If they core dump, entire process dies

• More opportunities for error with RPC:
– Server could generate error
– Problems in network
– Server crash
– Client might disappear while server is still

executing code for it

• Transparency breaks here
– Applications should be prepared to deal with

RPC failure

Paul Krzyzanowski • Distributed Systems

When things go wrong
• Semantics of remote procedure calls

– Local procedure call: exactly once

• Exactly once may be difficult to achieve
with RPC

• A remote procedure call may be called:
– 0 times: server crashed or server process

died before executing server code
– 1 time: everything worked well
– 1 or more: excess latency or lost reply from

server and client retransmission

Paul Krzyzanowski • Distributed Systems

RPC semantics
• Most RPC systems will offer either:

– at least once semantics
– or at most once semantics

• Understand application:
– idempotent functions: may be run any

number of times without harm
– non-idempotent functions: side-effects

7

Paul Krzyzanowski • Distributed Systems

More issues
Performance

– RPC is slower … a lot slower

Security
– messages visible over network
– Authenticate client
– Authenticate server

Paul Krzyzanowski • Distributed Systems

Programming with RPC
Language support

– Most programming languages (C, C++,
Java, …) have no concept of remote
procedure calls

– Language compilers will not generate client
and server stubs

Common solution:
– Use a separate compiler to generate stubs

(pre-compiler)

Paul Krzyzanowski • Distributed Systems

Interface Definition Language
• Allow programmer to specify remote

procedure interfaces
(names, parameters, return values)

• Pre-compiler can use this to generate
client and server stubs:
– Marshaling code
– Unmarshaling code
– Network transport routines
– Conform to defined interface

• Similar to function prototypes

Paul Krzyzanowski • Distributed Systems

RPC compiler

IDLIDL RPC
compiler

RPC
compiler

client code (main)client code (main)

server functionsserver functions

client stubclient stub

headersheaders

server skeletonserver skeleton

data conv.data conv.

data conv.data conv. compilercompiler

compilercompiler serverserver

clientclient

Paul Krzyzanowski • Distributed Systems

Writing the program
Client code has to be modified

– Initialize RPC-related options
• Transport type
• Locate server/service

– Handle failure of remote procedure call

Server functions
– Generally need little or no modification

Paul Krzyzanowski • Distributed Systems

RPC API
What kind of services does an RPC system need?

• Name service operations
– Export/lookup binding information (ports,

machines)
– Support dynamic ports

• Binding operations
– Establish client/server communications

using appropriate protocol (establish
endpoints)

• Endpoint operations
– Listen for requests, export endpoint to

name server

8

Paul Krzyzanowski • Distributed Systems

RPC API
What kind of services does an RPC system need?

• Security operations
– Authenticate client/server

• Internationalization operations
• Marshaling/data conversion operations
• Stub memory management

– Dealing with “reference” data, temporary
buffers

• Program ID operations
– Allow applications to access IDs of RPC

interfaces

Paul Krzyzanowski • Distributed Systems

To be continued …

