Remote Procedure Calls

Problems with sockets

Sockets interface is straightforward
— [connect]
— read/write
— [disconnect]
Forces read/write mechanism
— Not how we generally program
— We usually use a procedure call
To make distributed computing look more
like centralized:
— 1/0 is not the way to go

Paul Krzyzanowski « Distributed Systems

RPC

1984: Birrell & Nelson

— Mechanism to call procedures on other
machines
— Process on machine A can call procedure on
machine B
= A is suspended
= Execution continues on B
= When B returns, control passed back to A

Remote Procedure Call

normal call is taking place

Goal: it should appear to the programmer that a

Paul Krzyzanowski » Distributed Systems

Digression: local procedure calls

j =f(i, “mystring”, 7);

local vaF‘S\ § call by value
i=999 \P\
B call by value

55441122 |mystring
Code &
Static data

call by reference

Paul Krzyzanowski « Distributed Systems

Digression: local procedure calls

j =f(i, “mystring”, 7);

local vars
1. Prepare for call:
-=9997 . put params on stack
55441122
999

— SP

55441122 |mystring
Code &
Static data

Paul Krzyzanowski + Distributed Systems

Digression: local procedure calls

j =f(i, “mystring”, 7);

local vars
2. Call:
1999 call f
7
55441122
999
Return addr |— sp
— SP

55441122 [mystring
Code &
Static data

Paul Krzyzanowski + Distributed Systems

Digression: local procedure calls

j=f1(i, “mystring”, 7);

local vars
3. On entry to f:
'=9997 adjust SP to allocate
EEATI5D space for locals
999
Return addr
f:local vars| SP

[— SP

55441122 [mystring
Code &
Static data

Paul Krzyzanowski « Distributed Systems

Digression: local procedure calls

j =f(i, “mystring”, 7);

local vars
4. Prepare to return:
-=9997 - return value in
55441122 re gister
999 - adjust SP

Return addr [— sp _ return

[SP

55441122 [mystring
Code &
Static data

Paul Krzyzanowski « Distributed Systems

Digression: local procedure calls

j =f(i, “mystring”, 7);

local vars
5. Return:
=999 caller cleans up
parameters
[— SP

55441122 |mystring
Code &
Static data

Paul Krzyzanowski » Distributed Systems

Implementing RPC

No architectural support for remote
procedure calls

Simulate it with tools we have
(local procedure calls)

Simulation makes RPC a
language-level construct
instead of an
operating system construct

Paul Krzyzanowski « Distributed Systems

Implementing RPC
The trick:

Create stub functions to make it appear to
the user that the call is local

Stub function contains the function’s interface

Paul Krzyzanowski + Distributed Systems

Stub functions

1. Client calls stub (params on stack)

client functions server functions
. server stub
client stub
(skeleton)
network routines network routines
client server

Paul Krzyzanowski + Distributed Systems

Stub functions

2. Stub marshals params to net message

client functions

!

client stub

!

network routines

client

server functions

server stub
(skeleton)

network routines

N

server

Paul Krzyzanowski « Distributed Systems

Stub functions

3. Network message sent to server

client functions

!

client stub

!

server functions

server stub
(skeleton)

network routines

N

client

'l network routines

server

Paul Krzyzanowski « Distributed Systems

Stub functions

4. Receive message: send to stub

client functions

!

client stub

!

network routines

client

server functions

server stub
(skeleton)

network routines

server

Paul Krzyzanowski » Distributed Systems

Stub functions

5. Unmarshal parameters, call server func

client functions

!

client stub

!

network routines

client

server functions

1I

server stub
(skeleton)

network routines

server

Paul Krzyzanowski « Distributed Systems

Stub functions

6. Return from server function

client functions

!

client stub

!

network routines

client

server functions

4

server stub
(skeleton)

I

network routines

server

Paul Krzyzanowski + Distributed Systems

Stub functions

7. Marshal return value and send message

client functions

!

client stub

!

network routines

client

server functions

Ir 4

server stub
(skeleton)

r &

network routines

server

Paul Krzyzanowski + Distributed Systems

Stub functions

8. Transfer message over network

client functions server functions

! &

server stub

client stub
(skeleton)
network routines _L_|network routines
client server

Paul Krzyzanowski « Distributed Systems

Stub functions

9. Receive message: direct to stub

client functions server functions

! Ir_&

server stub

Stub functions

10. Unmarshal return, return to client code

client functions server functions

| i !

. server stub
client stub (skeleton)

4 1 r &

network routines

network routines

client server

Paul Krzyzanowski » Distributed Systems

client stub
(skeleton)
network routines _L_|network routines
client server
Paul Krzyzanowski + Distributed Systems
Benefits

* Procedure call interface

= Writing applications simplified
— RPC hides all network code into stub
functions

— Application programmers don’t have to
worry about details
= Sockets, port numbers, byte ordering

= RPC: presentation layer in OSI model

Paul Krzyzanowski « Distributed Systems

RPC has issues

Parameter passing

Pass by value
— Easy: just copy data to network message

Pass by reference
— Makes no sense without shared memory

Paul Krzyzanowski + Distributed Systems

Pass by reference?

. Copy items referenced to message buffer
Ship them over

. Unmarshal data at server

. Pass local pointer to server stub function
. Send new values back

aAWNPR

To support complex structures

— Copy structure into pointerless
representation

— Transmit

— Reconstruct structure with local pointers
on server

Paul Krzyzanowski « Distributed Systems

Representing data

No such thing as
incompatibility problems on local
system

Remote machine may have:
— Different byte ordering
— Different sizes of integers and other types
— Different floating point representations
— Different character sets
— Alignment requirements

Paul Krzyzanowski « Distributed Systems

Representing data

IP (headers) forced all to use big endian byte
ordering for 16 and 32 bit values
— Most significant byte in low memory
= Sparc, 680x0, MIPS, G5
= x86/Pentiums use little endian

mainQ) { Output on a Pentium:

unsigned int n; 44, 33, 22, 11
char *a = (char *)&n;

Output on a G4:

n = 0x11223344; 11, 22, 33, 44

printf("%02x, %02x, %02x, %02x\n",
a[0], a[1], a[2], a[3D);

Paul Krzyzanowski » Distributed Systems

Representing data

Need standard encoding to enable
communication between heterogeneous
systems

—e.g. Sun’s RPC uses XDR (eXternal Data
Representation)

Paul Krzyzanowski « Distributed Systems

Representing data

Implicit typing
— only values are transmitted, not data types
or parameter info
—e.g., Sun XDR

Explicit typing
— Type is transmitted with each value
—e.g., ISO’s ASN.1, XML

Paul Krzyzanowski + Distributed Systems

Where to bind?

Need to locate host and correct server
process

Paul Krzyzanowski + Distributed Systems

Where to bind? — Solution 1

Maintain centralized DB that can locate a

host that provides a particular service
(Birrell & Nelson’s 1984 proposal)

* Server sends message to central
authority stating its willingness to
accept certain remote procedure calls
(and sends port number)

« Clients then contact this authority when
they need to locate a service

Where to bind? — Solution 2

Paul Krzyzanowski « Distributed Systems

« Require client to know which host it
needs to contact

« A server on that host maintains a DB of
locally provided services

= Solution 1 is problematic for Sun NFS —
identical file servers serve different file
systems

Paul Krzyzanowski « Distributed Systems

Transport protocol

Which one?

= Some implementations may offer only
one (e.g. TCP)

* Most support several
— Allow programmer (or end user) to choose.

When things go wrong

Paul Krzyzanowski » Distributed Systems

« Local procedure calls do not fail
— If they core dump, entire process dies
= More opportunities for error with RPC:
— Server could generate error
— Problems in network
— Server crash
— Client might disappear while server is still
executing code for it
« Transparency breaks here

— Applications should be prepared to deal with
RPC failure

Paul Krzyzanowski « Distributed Systems

When things go wrong

= Semantics of remote procedure calls
— Local procedure call: exactly once

« Exactly once may be difficult to achieve
with RPC

« A remote procedure call may be called:
— 0 times: server crashed or server process

died before executing server code

— 1 time: everything worked well

— 1 or more: excess latency or lost reply from
server and client retransmission

RPC semantics

Paul Krzyzanowski + Distributed Systems

= Most RPC systems will offer either:
— at least once semantics
— or at most once semantics

= Understand application:

— idempotent functions: may be run any
number of times without harm

— non-idempotent functions: side-effects

Paul Krzyzanowski + Distributed Systems

More issues

Performance
— RPC is slower ... a lot slower

Security
— messages visible over network
— Authenticate client
— Authenticate server

Programming with RPC

Paul Krzyzanowski « Distributed Systems

Language support
— Most programming languages (C, C++,
Java, ...) have no concept of remote
procedure calls
— Language compilers will not generate client
and server stubs

Common solution:

— Use a separate compiler to generate stubs
(pre-compiler)

Paul Krzyzanowski « Distributed Systems

Interface Definition Language

= Allow programmer to specify remote
procedure interfaces
(names, parameters, return values)

= Pre-compiler can use this to generate
client and server stubs:
— Marshaling code
— Unmarshaling code
— Network transport routines
— Conform to defined interface

= Similar to function prototypes

RPC compiler

Paul Krzyzanowski » Distributed Systems

client code (main)

client stub

data conv.

headers

‘ data conv. '

server skeleton

server functions

Paul Krzyzanowski « Distributed Systems

Writing the program

Client code has to be modified

— Initialize RPC-related options
= Transport type
= Locate server/service
— Handle failure of remote procedure call

Server functions
— Generally need little or no modification

RPC API

Paul Krzyzanowski + Distributed Systems

What kind of services does an RPC system need?
= Name service operations

— Export/lookup binding information (ports,
machines)

— Support dynamic ports
= Binding operations
— Establish client/server communications
using appropriate protocol (establish
endpoints)
= Endpoint operations

— Listen for requests, export endpoint to
name server

Paul Krzyzanowski + Distributed Systems

RPC API

What kind of services does an RPC system need?

= Security operations
— Authenticate client/server
= Internationalization operations
« Marshaling/data conversion operations
* Stub memory management

— Dealing with “reference” data, temporary
buffers

* Program ID operations

— Allow applications to access IDs of RPC
interfaces

To be continued ...

Paul Krzyzanowski « Distributed Systems

Paul Krzyzanowski « Distributed Systems

